Circulating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots

نویسندگان

  • Laily D. Zubairova
  • Roza M. Nabiullina
  • Chandrasekaran Nagaswami
  • Yuriy F. Zuev
  • Ilshat G. Mustafin
  • Rustem I. Litvinov
  • John W. Weisel
چکیده

Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plasma using filtration. Clots made in platelet-free and microparticle-depleted plasma samples from the same healthy donors were analyzed in parallel. Microparticles accelerate fibrin polymerisation and support formation of more compact clots that resist internal and external fibrinolysis. These variations correlate with faster thrombin generation, suggesting thrombin-mediated kinetic effects of microparticles on fibrin formation, structure, and properties. In addition, clots formed in the presence of microparticles, unlike clots from the microparticle-depleted plasma, contain 0.1-0.5-μm size granular and CD61-positive material on fibres, suggesting that platelet-derived microparticles attach to fibrin. Therefore, the blood of healthy individuals contains functional microparticles at the levels that have a procoagulant potential. They affect the structure and stability of fibrin clots indirectly through acceleration of thrombin generation and through direct physical incorporation into the fibrin network. Both mechanisms underlie a potential role of microparticles in haemostasis and thrombosis as modulators of fibrin formation, structure, and resistance to fibrinolysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison of the mechanical, kinetic, and biochemical properties of fibrin clots formed with two different fibrin sealants.

The objective of the present study was to compare the mechanical, kinetic, and biochemical properties of fibrin clots produced using EVICEL Fibrin Sealant (Human) and TISSEEL Fibrin Sealant. The stiffness/elasticity and strength of fibrin clots formed with EVICEL and TISSEEL were assessed using applied mechanical force and thromboelastography (TEG). The factor XIII content of the fibrin clots w...

متن کامل

Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation.

Fibrin, the coagulation end product, consolidates the platelet plug at sites of vascular injury and supports the recruitment of circulating platelets. In addition to integrin αIIbβ3, another as-yet-unidentified receptor is thought to mediate platelet interaction with fibrin. Platelet glycoprotein VI (GPVI) interacts with collagen and several other adhesive macromolecules. We evaluated the hypot...

متن کامل

Flow rate-modulated dissolution of fibrin with clot-embedded and circulating proteases.

The efficiency of plasmin, miniplasmin, and neutrophil leukocyte elastase in fibrin digestion is well characterized in static systems. Since in vivo the components of the fibrinolytic system are permanently exposed to flow, we have developed two in vitro models and studied the effect of shear forces on fibrin dissolution with these proteases. Cylindrical nonocclusive fibrin clots are perfused a...

متن کامل

Fibrin clot properties in acute stroke: what differs cerebral hemorrhage from cerebral ischemia?

BACKGROUND AND PURPOSE Fibrin clot formation is important in acute intracerebral hemorrhage (ICH). We investigated plasma fibrin clot characteristics in acute ICH compared with acute ischemic stroke (IS) and nonstroke conditions. METHODS In the 3 studied groups, we analyzed plasma fibrin clot phenotype and its association with clinical stroke presentation. RESULTS Compared with controls, in...

متن کامل

Article Title: Elevated Prothrombin Results in Clots with an Altered Fiber Structure: a Possible Mechanism of the Increased Thrombotic Risk Running title: Elevated prothrombin alters clot structure

Individuals with elevated prothrombin levels are at increased risk of venous thrombosis. To understand the mechanism behind this observation, we studied the effect of prothrombin concentration on thrombin generation and fibrin clot structure. The pattern of thrombin generation was directly related to the prothrombin level at all concentrations tested. From 0 to 300% of normal plasma levels of p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015